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Abstract

Immune dysfunction can provoke (multiple) organ failure in severely injured patients. This
dysfunction manifests in two forms, which follow a biphasic pattern. During the first phase, in
addition to the injury by trauma, organ damage is caused by the immune system during a systemic
inflammatory response. During the second phase the patient is more susceptible for sepsis due to
host defence failure (immune paralysis). The pathophysiological model outlined in this review
encompasses etiological factors and the contribution of the innate immune system in the end organ
damage. The etiological factors can be divided into intrinsic (genetic predisposition and
physiological status) and extrinsic components (type of injury or "traumaload" and surgery or
"intervention load"). Of all the factors, the intervention load is the only one which, can be altered
by the attending emergency physician. Adjustment of the therapeutic approach and choice of the
most appropriate treatment strategy can minimize the damage caused by the immune response and
prevent the development of immunological paralysis. This review provides a pathophysiological
basis for the damage control concept, in which a staged approach of surgery and post-traumatic
immunomonitoring have become important aspects of the treatment protocol. The innate immune
system is the main objective of immunomonitoring as it has the most prominent role in organ
failure after trauma. Polymorphonuclear phagocytes and monocytes are the main effector-cells of
the innate immune system in the processes that lead to organ failure. These cells are controlled by
cytokines, chemokines, complement factors and specific tissue signals. The contribution of tissue
barrier integrity and its interaction with the innate immune system is further evaluated.

Introduction

Trauma is one of the major causes of mortality in people
under the age of 50 in the Western world. Patients die as
a direct consequence of their sustained injuries, or by the
additional damage caused by subsequent immune reac-
tions [1]. About 5% of the patients admitted after severe
trauma develops (multiple) organ failure (MOF). Multi-
ple organ failure is a clinical syndrome in which the func-
tionality of several organs fail subsequently or

simultaneously (i.e. liver, lungs, kidneys, heart). This
review outlines the initiating factors and underlying
mechanisms for the development of post-traumatic organ
failure. It provides a pathophysiological basis for the so-
called damage control concept. This concept involves a
treatment strategy in which a staged approach of surgery
in severely injured patients and post-traumatic immuno-
monitoring have become important aspects, to minimize
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the negative effects of a dysfunctional innate immune sys-
tem.

Multiple organ failure

Multiple organ failure after trauma has a multifactorial
etiology, which can be divided in endogenous and exoge-
nous factors. Endogenous factors, such as genetic predis-
position and physical condition form the basis of the
patient s susceptibility for the development of organ fail-
ure. Recent studies have shown that genetic variations
(e.g. TNF-o polymorphisms) are strongly associated with
the development of organ failure [2]. Exogenous factors,
like the injury itself (the "first hit" or "trauma-load") and
the resuscitation or surgical intervention (the "second hit"
or "intervention load") play a key role in the development
and clinical presentation of organ failure. Organ damage
and subsequent organ failure is the result of a dysfunc-
tional immune system. A localized inflammatory reaction
after injury is physiological, which can be explained by
the "danger model", an immunological theory coined by
Matzinger. The "danger model" explains that alarm sig-
nals can provoke an inflammatory reaction [3]. These
alarm signals can be secreted by healthy cells or released
by necrotic cells, which are present after injury is sus-
tained. The combination of type of tissue and type of
alarm signal decides what kind of response follows. Neu-
trophils and macrophages (effectors) are involved in
immune surveillance and injury control and after trauma
are activated through mediators (cytokines, chemokines
and complement). This local inflammatory response can
exacerbate and a systemic inflammatory response (SIRS)
develops. When SIRS leads to a multiple organ dysfunc-
tion syndrome (MODS) mortality can increase up to 50-
80% (Fig. 1) [2,4,5].

To restore the equilibrium of the excessive pro-inflamma-
tory reaction, an anti-inflammatory response is evoked. In
a propitious case, homeostasis is achieved. However, an
overreaction of the anti-inflammatory response can lead
to either a compensatory anti-inflammatory response
(CARS), or a mixed antagonist response (MARS) [6]. In
the latter syndrome the pro-inflammatory and anti-
inflammatory responses counterbalance each other. In
both situations (CARS and MARS), the body is in a state
of immune paralysis and is unable to produce an ade-
quate reaction to a new threat (i.e. infection). In this state
the patient is extremely prone to micro-organisms as there
is a defect in an important defense mechanism formed by
the cells of the innate immune system [7]. Resulting infec-
tions can cause serious complications like sepsis and sep-
tic shock with subsequent organ failure [8]. In conclusion,
SIRS and sepsis (predisposed by CARS or MARS), despite
different pathophysiological processes, can all result in
multiple organ failure (Fig. 2).

http://www.wjes.org/content/1/1/15

Cellular response: neutrophils

Tissue damage leads to the activation of neutrophils and
macrophages [9]. Hemorrhagic shock induces ischemia
and this causes the tissue to change its metabolism to
anaerobic. During resuscitation, thus reperfusion, oxygen
is transported to the ischemic area in the tissue and radical
oxygen species (ROS) are formed. These ROS are chemo-
attractants and activators of neutrophils (Fig. 3) [10,11].
Polymorphonuclear granulocytes (PMNs) have an impor-
tant role in the defense and debridement of the injured
tissue from the first 10 minutes until 3 days after injury
[12]. Priming, or pre-activation, is an essential step for
neutrophils which enhances functional responses of these
cells [13,14].

Priming

Priming is the result of pre-exposure to priming agents,
like granulocyte macrophage colony stimulating factor
(GM-CSF) or tumor necrosis factor (TNF-a) [15,16].
These priming agents are found in increased concentra-
tions in the peripheral blood of severely injured patients
and several priming enhanced functions of neutrophils
have been demonstrated in traumapatients and patients
undergoing major abdominal surgery [17,18]. The
enhanced functional response after priming encompasses
chemotaxis, adhesion, rolling, diapedesis and the oxida-
tive burst.

Oxidative burst

The increased oxidative burst (a cytotoxicity associated
response) is necessary to prepare the neutrophils for
invading micro-organisms. This increased functional
response in the form of oxidative radical production cor-
relates with the incidence of SIRS and MOF [19]. It is
thought that the increased cytotoxic potential of neu-
trophils is a sign of an uncontrolled inflammatory reac-
tion, which causes damage to tissues and leads to early
MOF. Maximum increased priming for cytotixicity (after
in vitro stimulation) was found between 3 and 24 hours
after trauma [20]. An elevated priming index (elevation of
the spontaneous oxidative burst from normal values) was
found between day 2 and 5 after trauma and remained
above normal until day 13 after trauma [21]. This
increased oxidative burst is thought to cause additional
damage to the tissue. Furthermore, the newly formed ROS
contribute to the attraction and subsequent activation of
neutrophils, which attributes to the accumulation of acti-
vated neutrophils in the tissue [11]. The harmful effects of
neutrophil activity can only occur when these cells enter
the tissue, therefore, an interaction between the neu-
trophil and endothelium has to occur. Interactive proc-
esses with the endothelium, like rolling, adhesion and
diapedesis, are necessary for leukocytes to exert their func-
tion in the target tissue. These leukocyte functions are
altered after trauma and during early organ failure.
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Biphasic model of organ failure. Depiction of the biphasic model of organ failure (MOF), originally coined by Moore[8].
The relative degree of immune activation is displayed on an arbitrary scale on the vertical axis. The horizontal axis indicates the
time following trauma. When injury is sustained, a systemic pro-inflammatory response (SIRS) is evoked which can lead to the
early version of MOF. At a later stage a compensatory anti-inflammatory response syndrome (CARS) or mixed antagonist
response syndrome (MARS) can lead to immune paralysis and subsequently, the late form of organ failure.

Rolling

Rolling is regulated and controlled by selectins. These pro-
teins undergo interactions with ligands on endothelial
cells, which slow down the leukocytes at this surface [22].
E-selectin, which can bind carbohydrate molecules, is pre-
sented on endothelial cells and are involved in the initial
contact between endothelial cells and leukocytes. Leuko-
cytes express L-selectin on their surface and is important
in secondary tattering, a process in which attached leuko-
cytes provide adhesion for other leukocytes. As a result,
leukocytes bind directly to each other and thus enhance
the effect of the homing process [23]. L-selectin is shed
after interaction with the endothelium and integrins take
over to regulate the next step in the transmigration proc-
ess. Some authors have reported a correlation between
decreased L-selectin expression on leukocytes and the
incidence of SIRS or early MOF, indicating to a relation
between the degree of neutrophil activation and the devel-
opment of complications occurring during the pro-
inflammatory phase [24,25]. The shed molecules can be
found as soluble factors in serum (sL-selectin). Conse-
quently, the activation level of the neutrophil population
is associated with the level of sL-selectin in the blood.
Maximum sL-selectin levels in serum are found 6 hours

after trauma, giving an indication on the time when the
highest amount of neutrophils have lost their L-selectin to
migrate to the tissue [26].

Adhesion

Integrins are involved in the adhesion of leukocytes to the
endothelium. The integrin amp2, or MAC-1 (CD11b/
CD18) and the ligand ICAM-1 (intercellular adhesion
molecule 1) form a high affinity stationary connection
between leukocyte and endothelium. This is in contrast to
the low affinity, reversible binding of selectins. Functional
integrins are only expressed upon activation of the neu-
trophil and are necessary for an adequate transmigration
process [27]. An increased expression of MAC-1 is found
on neutrophils from patients who were admitted with an
ISS > 16 as compared to traumapatients with an ISS < 16,
indicating to activated neutrophils after injury [26].
Increased expression of MAC-1 is also found in experi-
mental models and patients who received large amounts
of blood products for resuscitation [28]. In contrast, dur-
ing late organ failure a decreased expression of MAC-1 is
found on neutrophils from patients who died from the
consequences of sepsis as compared to patients who sur-
vived [29]. These results are congruent with the decreased
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percentage of MAC-1 positive neutrophils of critically ill
surgical patients with severe disease as compared with sur-
gical intensive care patients with less severe disease [30].

ICAM-1, normally expressed by activated entothelium,
also exists as a soluble factor in serum (sICAM-1) and
increased concentrations in septic patients correlate with
the incidence of organ failure and mortality [26,29].
Expression of MAC-1 or sSICAM give an indication on the
activation of neutrophils or tissue and are both related
with the development of organ failure. A high activation
state of neutrophils is associated with SIRS, whereas a low
activation state is related with sepsis. The activation state
of neutrophils changes over time and could provide a par-
tial explanation for the biphasic pattern of MOF |[8].

Apoptosis

Billions of neutrophils are produced by the bone marrow
on a daily basis [31]. Neutrophils, which have completed
their function in the tissue, go into apoptosis. Apoptosis
is necessary to limit the absolute number of neutrophils
present in the tissues. After trauma a delayed programmed
cell death (delayed apoptosis), has been demonstrated
[21]. This delay is seen directly after trauma and can last
up to 3 weeks [32]. Delayed apoptosis causes accumula-
tion of neutrophils in the tissue, where they can produce
more cytotoxic products (oxygen radicals and proteases)
and promote tissue damage. This delayed apoptosis is
found in patients with sepsis as well [33]. Bacterial prod-
ucts can inhibit apoptosis. In contrast to the large popula-
tion of neutrophils which show decreased apoptosis, a
relative larger subgroup of neutrophils exhibits signs of
apoptosis in whole blood [34].

Neutrophils are essential in the pathophysiology of
trauma-related organ failure [35]. Blocking or depletion
of neutrophils in experimental models results in a reduc-
tion of organ failure in the pro-inflammatory (early)
phase. However, overall organ failure increased due to an
increased incidence of organ failure caused by severe
infections during the anti-inflammatory (late) phase [36].
For future studies it seems more favorable to regulate the
neutrophil compartment instead of shutting this impor-
tant defense mechanism down.

Cellular response: macrophages

Neutrophils are important in the first response to injury,
as they form the first natural immunological defense
against micro-organisms and occur within 10 minutes
after injury is sustained. Subsequent to the initial
responders, monocytes/macrophages are recruited. These
cells orchestrate the mechanisms involved in wound heal-
ing [37]. They function in wound debridement and
secrete biologically active substances, called growth fac-
tors (e.g. TGF). TGF plays an important role in cell growth

http://www.wjes.org/content/1/1/15

and tissue repair and thus essential in the wound repair
after trauma [38]. Macrophages have a lasting influence
on the subsequent phases of proliferation and tissue dif-
ferentiation. Most of the macrophages are derived from
blood monocytes. Differentiation of monocytes into mac-
rophages and activation of macrophages takes place at the
wound site. The cells reach the wound area in great num-
bers, attracted by chemotactic signals from injured tissue,
the cytokines produced by immune cells and the presence
of bacterial products. A macrophage can phagocytose
micro-organisms and, in addition, is also capable of mod-
ulation of the adaptive immune response by mediating
antigen presentation to lymphocytes. Antigens are taken
up and partially degraded by the macrophage and then
presented to a T-lymphocyte for recognition by MHC-II
molecules. In injured patients, macrophages form the
bridge between innate and adaptive immunity.

Down-regulation of MHC-II expression leads to decreased
antigen presentation capacity and therefore higher suscep-
tibility for infectious complications. Several authors have
shown MHC-II suppression after trauma, which corre-
lated with the incidence of infectious complications.
MHC-II suppression on monocytes and macrophages is
considered to be one of the most important features of
immune suppression after injury. Some authors have sug-
gested CARS to be defined as less than 30% expression of
MHC-IT on monocytes [29].

Cytokines and chemokines

In past years many studies focused on the relation
between pro- and anti-inflammatory cytokines and the
development of SIRS and CARS. Tissue damage causes the
endothelial cells, fibroblasts, lymphocytes and tissue-
macrophages to produce these cytokines [39]. At first, pro-
inflammatory cytokines, such as TNF-o, GM-CSF, inter-
leukin 1B (IL-1p), IL-6 and IL-8 are produced [40].

TNF-¢ and IL-1[3

TNF-a and IL-1p are situated at the beginning of the pro-
inflammatory cascade (Fig. 3). IL-1 acts primarily locally,
but induces a systemic release of TNF-a and IL-6 by stim-
ulation of hepatic cells. IL-1p and TNF-a increase the con-
centration of neutrophils in the circulation, trigger an
increased chemotactic response, decrease the apoptosis
ratio, amplify phagocytosis and cause an increased perme-
ability of the endothelium. These actions lead to accumu-
lation of activated inflammatory cells in the tissue
[41,42]. TL-1B has been identified as an important
cytokine in patients with the acute respiratory distress syn-
drome (ARDS), a neutrophil mediated disease. Only
small amounts of biological active IL-1J are necessary to
induce inflammation in the pulmonary compartment
[41,43]. TNF-a has a more ambiguous role as its function
is depending on the context of the tissue. It participates in
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Factors involved in the etiology of post-traumaticorgan failure. Shows the complex of factors, mediators and effec-
tors involved in the development of organ failure. The endogenic factors (genetic predisposition and physical condition) form
the basis for the susceptibility of a patient to post-traumatic organ failure. The sustained injury is seen as the first hit on the
immune response and the "burden of surgery" is seen as the second hit, which can excacerbate the inflammatory reaction. The
mediators stimulate the effectors which cause end-organ damage.

an adequate immune response in its physiological role in
the circulation. TNF-a depleted or inhibit mice were inca-
pable of handling an infectious threat [44]. In addition,
administration of TNF-a reduces mortality in a sepsis
model performed on rats [45]. In a clinical situation how-
ever, increased serum concentrations of TNF-a correlate
with the development of septic shock in trauma patients.
It is unclear whether this is a causal relationship, or

whether this is merely an epiphenomenon and the high
levels of TNF-a are a sign of the host coping with tissue
injury or invading micro-organisms [46].

IL-6 and IL-8

Both IL-1B and TNF-a stimulate the production of IL-6
and IL-8. IL-8 is an important chemokine in the cascade
that leads to leukocyte recruitment and activation in the

Page 5 of 11

(page number not for citation purposes)



World Journal of Emergency Surgery 2006, 1:15

http://www.wjes.org/content/1/1/15

0?02' Phagocytosis
Fever ~o0;
Cachexia Oy ? F———— Inhibition
2
Bursl Neulrophils

Innate immunity : Adaptive immunity

Antigen presentation )—@

Maciophiages HLA-DR

-5

A

Chemotaxis / Activation

=

1B

e<®
D%?DNA

TNF-a

Injury
Ischaemia

Fibroblasts Endothslium

Figure 3

111

MBL Clg/MBL Plasmin

; Necrosis
ﬁ *B acteria

| =

>_

Circulation

Tibrin

Tissue

Endothelium Fibroblasts

Innate immunity in tissue damage. Shows the relation between several important factors involved in the pathophysiology
of organ failure after tissue injury. The figure is explained in detail in the article. C3a: Complement factor 3a; C5a: Complement
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tissues [47]. Production of IL-8 induces an influx of neu-
trophils towards the site of production, for example in
patients with ARDS to the lung. The IL-8 concentration in
the pulmonary fluid of patients with a thoracic trauma is
seen as an indicator for the occurrence of ARDS, as
increased levels correlate with the incidence [48]. IL-6 is
an acute phase protein such as C-reactive protein (CRP).
The protein's role in the pathophysiology of trauma-
related organ failure remains unclear due to the non-spe-
cificity of IL-6. However, epidemiological data shows evi-
dence of a correlation between increased IL-6 levels after
trauma and the Injury Severity Score (ISS), the incidence
of complications and mortality. A correlation also exists
between the [L-6 concentrations after intramedullary oste-
osynthesis and the development of ARDS [49]. [L-6 can be
seen as marker for the severity of trauma and, despite its
indistinct role in the pathophysiology, can be a resource
in triage, diagnosis and prognosis.

MIF

Macrophage migration inhibitory factor (MIF) is a pleio-
tropic molecule exerting its functions as an anterior pitui-
tary hormone, a pro-inflammatory cytokine and high
activity enzyme. It is produced abundantly by monocytes/
macrophages and acts in an autocrine/paracrine manner
to up-regulate and sustain the activation responses of
diverse cell types [50]. MIF is present in preformed, cyto-
plasmic pools within the macrophage and is in vitro rap-
idly released to  microbial products (both
lipopolysaccharide and Gram-positive exotoxins) [51].
This is also seen in vivo as high circulating levels of MIF
were found in septic and septic shock patients, in contrast
to normal levels in non-septic traumapatients [52]. In
addition, circulating levels of MIF correlated with positive
tests for bacterial cultures [53]. MIF induces vascular
hyporeactivity and could be the threshold protein in the
occurrence of septic shock.
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Relation between innate immunity and tissue factors following trauma. Shows the synergistic relation between the
activation of the innate immune system and the loss of organ barrier functions. Both can act independently to promote organ
failure, or when working together (synergize) induce clinical evident organ failure.

MIF overrides the anti-inflammatory actions of glucocor-
ticoid and acts via the stimulation of pro-inflammatory
cytokines like TNF-o, IL-1p and IL-8 via the NF-xB path-
way. MIF prevents apoptosis by reduction of the p53
tumor suppressor gene. Therefore, high concentrations of
MIF lead to a sustained pro-inflammatory response and
delayed apoptosis of cells of the innate immune system.
High concentrations of MIF have been found in the alve-
olar spaces of patients with ARDS [54]. Those authors sug-
gest that MIF acts as a mediator sustaining the
inflammatory response in ARDS and that an anti-MIF
strategy may represent a novel therapeutic approach in
inflammatory diseases like ARDS.

HMGB-I

High-mobility group box (HMGB)-1 was originally iden-
tified as a nuclear DNA-binding protein that functions as
a structural cofactor for proper DNA-transcriptional regu-

lation and gene expression [55]. Recent studies indicate
that immune cells can liberate HMGB-1 into the extracel-
lular milieu where it functions as a pro-inflammatory
cytokine. HMGB-1 is recognized by cells of the immune
system as a necrotic marker to signal tissue damage. It can
be passively released by damaged or necrotic cells or
actively secreted by macrophages and neutrophils. It is
seen as a late mediator as it is secreted by macrophages in
vitro 20 hours after stimulation. Increased levels of
HMGB-1 result in the disruption of endothelial barrier
functions, leading to vascular leakage and tissue hypoper-
fusion, similar to that observed in sepsis. In vivo increased
levels of HMGB-1 are shown in patients with severe sepsis
[56]. In experimental studies inhibition of HMGB-1 pre-
vents endotoxin and bacteremia induced multiple organ
failure and improves survival [57]. In an experimental
model intratracheal administration of recombinant
HMGB-1 induces a dose-dependent interstitial and intra-
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alveolar neutrophil accumulation and lung edema at 8
and 24 hours post-administration[58]. Neutralizing
HMGB-1 antibodies have been reported to reduce mortal-
ity in experimental models of acute lung injury or
ischemia/reperfusion injury [55].

IL-10

IL-10 plays an important role in the anti-inflammatory
response. This protein is produced simultaneously with
the pro-inflammatory cytokines, but peaks hours later.
One of the functions of IL-10 is the negative feedback on
the production of TNF-a, IL-6 and IL-8. The cytokine IL-
10 plays a pivotal role in the suppression of monocyte
function as it directly decreases MHC-II expression [59].
IL-10 causes the MHC-II molecules on the surface of
monocytes and macrophages to be internalized [60].
Increased levels of IL-10 have been shown to correlate
with the development of sepsis or adverse outcome dur-
ing sepsis. However, IL-10 is unable to discern outcome or
severity of illness on an individual level. In addition, the
biological activity of IL-10 is dependent on the pH and
temperature, which is often altered in severely injured or
septic patients [61]. It is unclear, whether increased IL-10
levels have a causal relationship with the development of
complications, or whether it is a sign of a struggling host.

Complement factors

Complement is a collection of proteins, which are
involved in the protection against micro-organisms. It is
one of the most preserved defense mechanisms during the
evolution of the immune system. Next to activation by
immune complexes complement can bind conserved bac-
teriological compounds (e.g. bacterial carbohydrates, bac-
terial antigens) and altered self-products (e.g. free DNA)
via mannose binding lectin, ficolins or complement factor
C1q [62]. Complement can opsonize bacteria by comple-
ment factor C3b, a split product of C3. Opsonisation
leads to attraction of leukocytes and enhances phagocyto-
sis of bacteria. In the absence of bacterial or altered self
products, the complement system can be activated by a
connection with the coagulation system. The coagulation
cascade and the complement cascade are connected
through plasmin, a product of the trombolytic route that
regulates homeostasis in the coagulation. Due to injury
large scale activation of the coagulation cascade occurs. In
trauma both coagulation factors and tissue damage acti-
vate the complement cascade [63]. This leads to neu-
trophil homing to the tissues and activation on the site of
injury. Several studies have shown a correlation between
activated complement factors (C3a/C3 ratio and C5a) and
mortality after trauma [64]. In vitro is shown that C5a reg-
ulates two important aspects of neutrophil function; i)
adhesion associated processes and ii) cytotoxic associated
processes [65]. Complement is one of the most important
factors contributing to neutrophil dysfunction, likely due

http://www.wjes.org/content/1/1/15

to this dual function. In recent experimental studies,
blocking of complement lead to a reduction in pulmonary
and intestinal permeability [66]. The accumulation of
neutrophils in the lung was reduced by blocking the com-
plement factor C5. This is a promising finding, which can
lead to novel therapeutic probabilities.

Tissue involvement

Trauma not only activates the innate immune response,
but also alters the barrier integrity of several organs.
Intramedullary osteosynthesis of femur fractures is
thought to stimulate the innate immune response on a
systemic level and is associated with an increased inci-
dence of ARDS [67]. On the other hand, isolated thoracic
injury induces local injury but is associated with the
occurrence of ARDS as well [68,69]. When additional
injury to the lungs is present during intramedullary osteo-
synthesis, the incidence of ARDS can increase two-fold
[70]. This phenomenon suggests a synergistic mechanism
between the activation of innate immunity and the loss of
tissue barrier function (Fig. 4). The contribution of the
loss of barrier function comes to attention not only in pro-
inflammatory complications such as ARDS, but also in
anti-inflammatory complications such as sepsis. A corre-
lation has been shown between increased intestinal per-
meability and the occurrence of infectious complications
[71]. Tt is thought that bacterial translocation due to
increased intestinal permeability cause septic complica-
tions in an immunocompromised host [72]. In the pro-
inflammatory phase, organ failure often precedes infec-
tion and an additional infection "only" deteriorates the
remainder of the organ functions. This can be explained
by the danger model, which states that innate immunity is
already triggered after trauma, but can receive an addi-
tional stimulus in the form of invading bacteria. During
the anti-inflammatory phase infection often precedes
organ failure, giving it a more prominent role in the devel-
opment of this severe complication. Despite the clear cor-
relations between increased intestinal permeability and
the incidence of sepsis in experimental settings, the rela-
tion in the clinical setting is less clear [73,74]. It is also
known that the interpretation of immunological signals
by cells of the innate immune system is dependent on
environmental and tissue specific factors and for compli-
cations to become clinically evident, a threshold needs to
be reached in specific tissues.

A cut-off point of >800 pg/ml IL-6 has been proposed as a
prognostic marker and has been suggested for immuno-
monitoring in the damage control strategy. Unfortu-
nately, at present no scoring system or prognostic tool is
conclusive enough to adequately predict an adverse out-
come on an individual level. The complexity of organ fail-
ure and the often ambiguous role of the different factors
prevents a clear cut target for therapy. Many studies inves-
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tigated individual mediators or effectors, which limits the
interpretation of effector function in the tissues. Further-
more, cytokines often have crosstalk or cumulative effect
and insight in the group effect of cytokines and chemok-
ines would provide more accurate information about the
net effect.

The scoring systems ought to be used to define the appro-
priate therapy. Damage control surgery and damage con-
trol orthopedics are currently used strategies to limit the
incidence of organ failure after trauma [76,77]. Timing of
surgery is essential in this damage control approach and
recent literature provides a timeframe for planning inter-
ventions [78,79]. This timeframe, which is based on data-
base analysis, is not fully complementary with the
activation status of the innate immune system. According
to the measurements of neutrophils (oxidative burst and
L-selectin) hyper-inflammation is at its maximum 6 hours
after trauma, whereas according to the damage control
timeframe hyper-inflammation is present between day 2-
4[20,26]. Despite this problem in defining the timeframe,
solutions are sought to prevent the excessive inflamma-
tion. A recent therapy that became available, hemoglobin
based oxygen carriers as alternative for packed red blood
cells, show promising results in limiting the inflammatory
response [28]. The start of hypo-inflammation is less well
defined and more individual determined, which makes
therapy more difficult.

Conclusion

Several studies have shown a relationship between the
severity of trauma and the resulting immune response
[75]. The injury to the host can be expressed in scoring
systems and these have become important prognostic
tools to calculate the risk based on clinical signs and
symptoms in combination with inflammatory parameters
[68]. It is likely that a threshold needs to be reached before
clinical symptoms become evident. The loss of barrier
integrity of different organs seems to play a major role in
the development of complications in both the pro-inflam-
matory period and the anti-inflammatory period. Studies
which focus on the interaction between host and innate
immunity are to be performed to resolve the post-trau-
matic complications resulting in organ failure. Immuno-
monitoring with interpretation of group effects of
cytokines or analysis of effector cells in interaction with
tissue may lead to more intensive immunomonitoring
and the adjustment of therapeutic and supportive strate-
gies for the optimalization of care for trauma-patients.
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